Electroless formation of silver nanoaggregates: An experimental and molecular dynamics approach

Francesco T. Gentile, Michele Monteferrante, Letizia Chiodo, Andrea Toma, Maria Laura Coluccio, Giovanni Ciccotti, Enzo M. Di Fabrizio

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The ability to manipulate matter to create non-conventional structures is one of the key issues of material science. The understanding of assembling mechanism at the nanoscale allows us to engineer new nanomaterials, with physical properties intimately depending on their structure.This paper describes new strategies to obtain and characterise metal nanostructures via the combination of a top-down method, such as electron beam lithography, and a bottom-up technique, such as the chemical electroless deposition. We realised silver nanoparticle aggregates within well-defined patterned holes created by electron beam lithography on silicon substrates. The quality characteristics of the nanoaggregates were verified by using scanning electron microscopy and atomic force microscopy imaging. Moreover, we compared the experimental findings to molecular dynamics simulations of nanoparticles growth. We observed a very high dependence of the structure characteristics on the pattern nanowell aspect ratio. We found that high-quality metal nanostructures may be obtained in patterns with well aspect ratio close to one, corresponding to a maximum diameter of 50 nm, a limit above which the fabricated structures become less regular and discontinuous. When regular shapes and sizes are necessary, as in nanophotonics, these results suggest the pattern characteristics to obtain isolated, uniform and reproducible metal nanospheres. © 2014 Taylor & Francis.
Original languageEnglish (US)
Pages (from-to)1375-1388
Number of pages14
JournalMolecular Physics
Volume112
Issue number9-10
DOIs
StatePublished - Apr 3 2014

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by the EU Commission, the European Social Fund and the Calabria Region under Grant POR Calabria FSE 2007-2013; Italian Minister of Health [grant number GR-2010-2320665]; IIT SEED project 'SIMBEDD'; SFI [grant number 08-IN.1-I1869]; CASPUR-CINECA under Grant IscraB_SNaMT.

ASJC Scopus subject areas

  • Molecular Biology
  • Physical and Theoretical Chemistry
  • Biophysics
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Electroless formation of silver nanoaggregates: An experimental and molecular dynamics approach'. Together they form a unique fingerprint.

Cite this