Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

Snehashis Choudhury, Zhengyuan Tu, Sanjuna Stalin, Duylinh Vu, Kristen Fawole, Deniz Gunceler, Ravishankar Sundararaman, Lynden A. Archer

Research output: Contribution to journalArticlepeer-review

149 Scopus citations

Abstract

Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.
Original languageEnglish (US)
Pages (from-to)13070-13077
Number of pages8
JournalAngewandte Chemie International Edition
Volume56
Issue number42
DOIs
StatePublished - Sep 8 2017
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: We are grateful to the Advanced Research Projects Agency-Energy (ARPA-E) through award number 1002-2265, DE-FOA-001002 for supporting this study. The study also made use of the electrochemical characterization facilities of the KAUST-CU Center for Energy and Sustainability, which is supported by the King Abdullah University of Science and Technology (KAUST) through award number KUS-C1-018-02. Electron microscopy facilities at the Cornell Center for Materials Research (CCMR), an NSF-supported MRSEC through Grant DMR-1120296, were also used for the study.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport'. Together they form a unique fingerprint.

Cite this