Abstract
This Review provides an overview of electrochemical techniques that are implemented in addressing gaseous CO2 towards the synthesis of a particular fuel (i.e. formic acid). The electrochemical reaction mechanism, as well as the advancement of electrodes, catalyst materials, and reactor designs are reviewed and discussed. To date, the electrolytic cell is the dominant reaction site and, based on which, various catalysts have been proposed and researched. In addition, relevant work regarding reactor design optimization for the purpose of alleviating restrictions of the current CO2 electrochemical reduction system are summarized, including low reactant-transfer rate, high reaction overpotential, and low product selectivity. The use of microfluidic techniques to build microscale electrochemical reactors is identified to be highly promising to largely increase the electrochemical performance. Finally, future challenges and opportunities of electrochemical reduction of CO2 are discussed. © 2014 WILEY-VCH Verlag GmbH
Original language | English (US) |
---|---|
Pages (from-to) | 836-849 |
Number of pages | 14 |
Journal | ChemElectroChem |
Volume | 1 |
Issue number | 5 |
DOIs | |
State | Published - May 1 2014 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2021-03-16ASJC Scopus subject areas
- Electrochemistry
- Catalysis