Abstract
Precise electric load forecasting at different time horizons is an essential aspect for electricity producers and consumers who participate in energy markets in order to maximize their economic efficiency. Moreover, accurate prediction of the electric load contributes toward robust and resilient power grids due to the error minimization of generators scheduling schemes. The accuracy of the existing electric load forecasting methods relies on data quality due to noisy real-world environments, and data integrity due to malicious cyber-attacks. This paper proposes a cyber-secure deep learning framework that accurately predicts electric load in power grids for a time horizon spanning from an hour to a week. The proposed deep learning framework systematically integrates Autoencoder (AE), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) models (AE-CLSTM). The feasibility of the proposed solution is validated by using realistic grid data acquired from the distribution network of Tabriz, Iran. Compared to other load forecasting methods, the proposed method shows the highest accuracy in both a normal case with real-world noise and a stealthy False Data Injection Attack (FDIA). The proposed load forecasting method is practical and suitable for mitigating noise in real-world data and integrity attacks.
Original language | English (US) |
---|---|
Pages (from-to) | 9933-9945 |
Number of pages | 13 |
Journal | Energy Reports |
Volume | 8 |
DOIs | |
State | Published - Aug 11 2022 |
Bibliographical note
KAUST Repository Item: Exported on 2022-09-14Acknowledgements: This work was supported by European Commission Horizon 2020 Marie Skłodowska-Curie Actions Cofund program and TÜBİTAK (Project Number:120C080)
ASJC Scopus subject areas
- General Energy