Abstract
Mediating a metastable state is a promising way to achieve a giant modulation of physical properties in artificial heterostructures. A metastable state La0.67Sr0.33MnO3 (LSMO) layer suffering tensile strain was grown on MgO substrates. Incorporating with the ferroelectric BaTiO3 (BTO) layer, an accumulation or depletion state controlled by electric fields can be formed at the BTO/LSMO interface, which drives a switching of the conduction mechanism between space charge limited conduction and Poole-Frenkel emission, corresponding to the low and high resistance states. Our results lighten an effective way for electric-field modulated resistance states in multiferroic magnetoelectric devices.
Original language | English (US) |
---|---|
Pages (from-to) | 062901 |
Journal | Applied Physics Letters |
Volume | 111 |
Issue number | 6 |
DOIs | |
State | Published - Aug 8 2017 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was supported by the National Natural Science Foundation of China (51272174 and 11434006). The authors thank S. Wu and L. Y. Xu for PFM and KPFM performance. This work was supported by Beijing Synchrotron Radiation Facility (BSRF).