Electric-Field-Enhanced Bulk Perpendicular Magnetic Anisotropy in GdFe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 Multiferroic Heterostructure

Aitian Chen, Senfu Zhang, Yan Wen, Haoliang Huang, Jürgen Kosel, Yalin Lu, Xixiang Zhang

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Perpendicular magnetic anisotropy is important for increasing the information storage density in the perpendicular magnetic recording media, and for rare earth-transition metal alloys with bulk perpendicular magnetic anisotropy that generate great research interest due to their abundant interesting phenomena, such as fast domain wall motion and skyrmion. Here, we deposit amorphous GdFe ferrimagnetic films on Pb(Mg1/3Nb2/3)0.7Ti0.3O3 ferroelectric substrate and investigate the effect of electric-field-induced piezostrain on its bulk perpendicular magnetic anisotropy. The anomalous Hall effect and polar Kerr image measurements suggest an enhanced bulk perpendicular magnetic anisotropy by electric field, which originates from a positive magnetoelastic anisotropy due to the positive magnetostriction coefficient of the GdFe film and the electric-field-induced tensile strain along the z axis in Pb(Mg1/3Nb2/3)0.7Ti0.3O3 ferroelectric substrate. Our results enrich the electrical control of perpendicular magnetic anisotropy and are useful for designing spintronic devices based on perpendicular magnetic anisotropy.
Original languageEnglish (US)
Pages (from-to)47091-47097
Number of pages7
JournalACS Applied Materials & Interfaces
Volume11
Issue number50
DOIs
StatePublished - Nov 18 2019

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): CRF-2017-3427-CRG6
Acknowledgements: This work was supported by King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR) under Award No. CRF-2017-3427-CRG6. The authors acknowledge the Nanofabrication Core Lab at KAUST for the excellent assistance. The authors also acknowledge the partial support from the Bureau of Facility Support and Budget, CAS, and the Anhui Initiative in Quantum Information Technologies (AHY100000).

Fingerprint

Dive into the research topics of 'Electric-Field-Enhanced Bulk Perpendicular Magnetic Anisotropy in GdFe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 Multiferroic Heterostructure'. Together they form a unique fingerprint.

Cite this