Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

Juhyuk Moon, Seyoon Yoon, Renata M. Wentzcovitch, Simon M. Clark, Paulo J. M. Monteiro

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.
Original languageEnglish (US)
Pages (from-to)2972-2978
Number of pages7
JournalJournal of the American Ceramic Society
Volume95
Issue number9
DOIs
StatePublished - Jun 4 2012
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-l1-004021
Acknowledgements: Supported in part by Award No. KUS-l1-004021, made by King Abdullah University of Science and Technology (KAUST).The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. RMW was supported by NSF/EAR 1047629. The UC Berkeley Molecular Graphics and Computation Facility is supported by NSF/CHE-0840505.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations'. Together they form a unique fingerprint.

Cite this