Abstract
In this paper, we present a new synthesis methodology that facilitates the design automation of maximum bandwidth transimpedance amplifier (TIA) for optical communications under the constraint of a specific bit error rate. Our synthesis methodology is based on newly developed models that characterize the input referred noise and bandwidth. Our technique provides the optimal parameters of the transimpedance amplifier for maximizing the bandwidth. These optimal parameters are mapped to equivalent circuit parameters to achieve the optimal sizing of the TIA. Our methodology is characterized by its very fast design convergence as well as better results compared to conventional design techniques. We applied our synthesis methodology in designing a TIA for optical interconnect systems using the 0.25μm and 0.18μm CMOS technologies. © Springer Science+Business Media, LLC 2007.
Original language | English (US) |
---|---|
Pages (from-to) | 205-211 |
Number of pages | 7 |
Journal | Analog Integrated Circuits and Signal Processing |
Volume | 50 |
Issue number | 3 |
DOIs | |
State | Published - Mar 1 2007 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2022-09-13ASJC Scopus subject areas
- Hardware and Architecture
- Signal Processing
- Surfaces, Coatings and Films