Abstract
Air traffic has seen tremendous growth over the past decade pushing the need for enhanced air traffic management schemes. The L-band digital aeronautical communication system (LDACS) is gaining traction as a scheme of choice, and aims to exploit the capabilities of modern digital communication techniques and computing architectures. Cognitive radio-based approaches have also been proposed for LDACS to improve spectrum efficiency and communication capacity; however, these require intelligent compute capability in aircrafts that enforce limited space and power budgets. This paper proposes the use of multiplierless correlation to enable spectrum sensing in LDACS air-to-ground links, and its integration into the on-board LDACS system. The proposed architecture offers improved performance over traditional energy detection (ED) even at low signal-to-noise ratio (SNR) with lower energy consumption than a multiplier-based correlator, while also assisting in receiver synchronization. We evaluate the proposed architecture on a Xilinx Zynq field-programmable gate array and show that our approach results in 28.3% reduction in energy consumption over the multiplier-based approach. Our results also show that the proposed architecture offers 100% accuracy in detection even at -12-dB SNR without requiring additional circuitry for noise estimation, which are an integral part of ED-based approaches.
Original language | English (US) |
---|---|
Pages (from-to) | 1183-1191 |
Number of pages | 9 |
Journal | IEEE Transactions on Very Large Scale Integration (VLSI) Systems |
Volume | 26 |
Issue number | 6 |
DOIs | |
State | Published - Jun 1 2018 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2021-03-16ASJC Scopus subject areas
- Hardware and Architecture
- Software
- Electrical and Electronic Engineering