TY - JOUR
T1 - Efficient scattering angle filtering for Full waveform inversion
AU - Alkhalifah, Tariq Ali
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2015/8/19
Y1 - 2015/8/19
N2 - Controlling the scattering angles between the state and the adjoint variables for the energy admitted into an inversion gradient or an image can help improve these functions for objectives in full waveform inversion (FWI) or seismic imaging. However, the access of the scattering angle information usually requires an axis extension that could be costly, especially in 3D. For the purpose of a scattering angle filter, I develop techniques that utilize the mapping nature (no domain extension) of the filter for constant-velocity background models to interpolate between such filtered gradients using the actual velocity. The concept has well known roots in the application of phase-shift-plus-interpolation utilized commonly in the downward continuation process. If the difference between the minimum and maximum velocity of the background medium is large, we obtain filtered gradients corresponding to more constant velocity backgrounds and use linear interpolation between such velocities. The accuracy of this approximation for the Marmousi model gradient demonstrates the e ectiveness of the approach.
AB - Controlling the scattering angles between the state and the adjoint variables for the energy admitted into an inversion gradient or an image can help improve these functions for objectives in full waveform inversion (FWI) or seismic imaging. However, the access of the scattering angle information usually requires an axis extension that could be costly, especially in 3D. For the purpose of a scattering angle filter, I develop techniques that utilize the mapping nature (no domain extension) of the filter for constant-velocity background models to interpolate between such filtered gradients using the actual velocity. The concept has well known roots in the application of phase-shift-plus-interpolation utilized commonly in the downward continuation process. If the difference between the minimum and maximum velocity of the background medium is large, we obtain filtered gradients corresponding to more constant velocity backgrounds and use linear interpolation between such velocities. The accuracy of this approximation for the Marmousi model gradient demonstrates the e ectiveness of the approach.
UR - http://hdl.handle.net/10754/593143
UR - http://library.seg.org/doi/10.1190/segam2015-5887023.1
UR - http://www.scopus.com/inward/record.url?scp=84997169694&partnerID=8YFLogxK
U2 - 10.1190/segam2015-5887023.1
DO - 10.1190/segam2015-5887023.1
M3 - Article
SN - 1949-4645
VL - 34
SP - 1138
EP - 1142
JO - SEG Technical Program Expanded Abstracts 2015
JF - SEG Technical Program Expanded Abstracts 2015
ER -