Efficient Light Absorption by GaN Truncated Nanocones for High Performance Water Splitting Applications

Yeong Jae Kim, Gil Ju Lee, Seungkyu Kim, Jung-Wook Min, Sang Yun Jeong, Young Jin Yoo, Sanghan Lee, Young Min Song

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

Despite the importance of gallium nitride (GaN) nanostructures for photocatalytic activity, relatively little attention has been paid to their geometrical optimization on the basis of wave optics. In this study, we present GaN truncated nanocones to provide a strategy for improving solar water splitting efficiencies, compared to the efficiency provided by the conventional geometries (i.e., flat surface, cylindrical, and cone shapes). Computational results with a finite difference time domain (FDTD) method and a rigorous coupled-wave analysis (RCWA) reveal important aspects of truncated nanocones, which effectively concentrate light in the center of the nanostructures. The introduction of nanostructures is highly recommended to address the strong light reflection of photocatalytic materials and carrier lifetime issues. To fabricate the truncated nanocones at low cost and with large-area, a dry etching method was employed with thermally dewetted metal nanoparticles, which enables controllability of desired features on a wafer scale. Experimental results exhibit that the photocurrent density of truncated nanocones is improved about three times higher compared to that of planar GaN.
Original languageEnglish (US)
Pages (from-to)28672-28678
Number of pages7
JournalACS Applied Materials & Interfaces
Volume10
Issue number34
DOIs
StatePublished - Aug 7 2018

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by an Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No.2017000709), The Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Korea government (MSIP) (NRF-2017M3D1A1039288) and Korea Basic Science Institute under the R&D program (Project No. D37615) supervised by the Ministry of Science.

Fingerprint

Dive into the research topics of 'Efficient Light Absorption by GaN Truncated Nanocones for High Performance Water Splitting Applications'. Together they form a unique fingerprint.

Cite this