Abstract
Self-supervised pre-training of image encoders is omnipresent in the literature, particularly following the introduction of Masked autoencoders (MAE). Current efforts attempt to learn object-centric representations from motion in videos. In particular, SiamMAE recently introduced a Siamese network, training a shared-weight encoder from two frames of a video with a high asymmetric masking ratio (95%). In this work, we propose CropMAE, an alternative approach to the Siamese pre-training introduced by SiamMAE. Our method specifically differs by exclusively considering pairs of cropped images sourced from the same image but cropped differently, deviating from the conventional pairs of frames extracted from a video. CropMAE therefore alleviates the need for video datasets, while maintaining competitive performances and drastically reducing pre-training and learning time. Furthermore, we demonstrate that CropMAE learns similar object-centric representations without explicit motion, showing that current self-supervised learning methods do not learn such representations from explicit object motion, but rather thanks to the implicit image transformations that occur between the two views. Finally, CropMAE achieves the highest masking ratio to date (98.5%), enabling the reconstruction of images using only two visible patches. Our code is available at https://github.com/alexandre-eymael/CropMAE.
Original language | English (US) |
---|---|
Title of host publication | Computer Vision – ECCV 2024 - 18th European Conference, Proceedings |
Editors | Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 348-366 |
Number of pages | 19 |
ISBN (Print) | 9783031733369 |
DOIs | |
State | Published - 2025 |
Event | 18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy Duration: Sep 29 2024 → Oct 4 2024 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 15081 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 18th European Conference on Computer Vision, ECCV 2024 |
---|---|
Country/Territory | Italy |
City | Milan |
Period | 09/29/24 → 10/4/24 |
Bibliographical note
Publisher Copyright:© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
Keywords
- Label propagation
- Masked autoencoders
- Self-supervised learning
- Siamese networks
- Video segmentation
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science