Efficient Energy Sensitization of C 60 and Application to Organic Photovoltaics

Cong Trinh, Kent O. Kirlikovali, Andrew N. Bartynski, Christopher J. Tassone, Michael F. Toney, George F. Burkhard, Michael D. McGehee, Peter I. Djurovich, Mark E. Thompson

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Fullerenes are currently the most popular electron-acceptor material used in organic photovoltaics (OPVs) due to their superior properties, such as good electron conductivity and efficient charge separation at the donor/acceptor interface. However, low absorptivity in the visible spectral region is a significant drawback of fullerenes. In this study, we have designed a zinc chlorodipyrrin derivative (ZCl) that absorbs strongly in the visible region (450-600 nm) with an optical density 7-fold higher than a C60 film. ZCl efficiently transfers absorbed photoenergy to C60 in mixed films. Application of ZCl as an energy sensitizer in OPV devices leads to an increase in the photocurrent from the acceptor layer, without changing the other device characteristics, i.e., open circuit voltage and fill factor. For example, C 60-based OPVs with and without the sensitizer give 4.03 and 3.05 mA/cm2, respectively, while both have VOC = 0.88 V and FF = 0.44. Our ZCl sensitization approach improves the absorbance of the electron-acceptor layer while still utilizing the beneficial characteristics of C60 in OPVs. © 2013 American Chemical Society.
Original languageEnglish (US)
Pages (from-to)11920-11928
Number of pages9
JournalJournal of the American Chemical Society
Volume135
Issue number32
DOIs
StatePublished - Aug 2 2013
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Financial support from Global Photonic Energy Corporation (GPEC), Department of Energy (DOE), Center for Energy Nanoscience (CEN) at USC, National Science Foundation (NSF) and King Abdullah University of Science and Technology (KAUST), through the Center for Molecular Photovoltaics (CAMP) is gratefully acknowledged. Details of how each funding agency supported this work are given in the Supporting Information. We thank Dr. Ralf Haiges for the help in refining single crystal structure, Dr. Travis Williams for the help in NOESY 1H NMR experiment, and Drs. Sarah Conron and Zhiwei Liu for helpful discussions.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Efficient Energy Sensitization of C 60 and Application to Organic Photovoltaics'. Together they form a unique fingerprint.

Cite this