Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule

Haroon Butt, Ayman Eid, Zahir Ali, Mohamed A. M. Atia, Morad M. Mokhtar, Norhan Hassan, Ciaran M. Lee, Gang Bao, Magdy M. Mahfouz

Research output: Contribution to journalArticlepeer-review

113 Scopus citations

Abstract

The CRISPR/Cas9 system has been applied in diverse eukaryotic organisms for targeted mutagenesis. However, targeted gene editing is inefficient and requires the simultaneous delivery of a DNA template for homology-directed repair (HDR). Here, we used CRISPR/Cas9 to generate targeted double-strand breaks and to deliver an RNA repair template for HDR in rice (Oryza sativa). We used chimeric single-guide RNA (cgRNA) molecules carrying both sequences for target site specificity (to generate the double-strand breaks) and repair template sequences (to direct HDR), flanked by regions of homology to the target. Gene editing was more efficient in rice protoplasts using repair templates complementary to the non-target DNA strand, rather than the target strand. We applied this cgRNA repair method to generate herbicide resistance in rice, which showed that this cgRNA repair method can be used for targeted gene editing in plants. Our findings will facilitate applications in functional genomics and targeted improvement of crop traits.
Original languageEnglish (US)
JournalFrontiers in Plant Science
Volume8
DOIs
StatePublished - Aug 24 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This study was supported by King Abdullah University of Science and Technology.

Fingerprint

Dive into the research topics of 'Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule'. Together they form a unique fingerprint.

Cite this