Abstract
Hydrogen can facilitate the detachment of protective oxide layer off metals and alloys. The degradation is usually exacerbated at elevated temperatures in many industrial applications; however, its origin remains poorly understood. Here by heating hydrogenated aluminium inside an environmental transmission electron microscope, we show that hydrogen exposure of just a few minutes can greatly degrade the high temperature integrity of metal–oxide interface. Moreover, there exists a critical temperature of ∼150 °C, above which the growth of cavities at the metal–oxide interface reverses to shrinkage, followed by the formation of a few giant cavities. Vacancy supersaturation, activation of a long-range diffusion pathway along the detached interface and the dissociation of hydrogen-vacancy complexes are critical factors affecting this behaviour. These results enrich the understanding of hydrogen-induced interfacial failure at elevated temperatures.
Original language | English (US) |
---|---|
Journal | Nature Communications |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - Feb 20 2017 |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: M.L., D.-G.X. and Z.-W.S. acknowledge support from the National Natural Science Foundation of China (51231005 and 51621063) and the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies. J.L. acknowledges support by NSF DMR-1120901 and DMR-1410636. E.M. acknowledges support from US DoE-BES-DMSE under Contract No. DE-FG02-09ER46056. M.L. acknowledges the support from King Abdullah University of Science and Technology (KAUST) during her stay at KAUST as an exchange student. X.-X.Z. acknowledges the support from King Abdullah University of Science and Technology.