Effect of heat, UV radiation, and moisture on the decohesion kinetics of inverted organic solar cells

Nicholas Rolston, Adam D. Printz, Stephanie R. Dupont, Eszter Voroshazi, Reinhold H. Dauskardt

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Organic solar cells subjected to environmental stressors such as heat, moisture, and UV radiation can undergo significant mechanical degradation, leading to delamination of layers and device failure. This paper reports the effect these stressors have on the mechanical integrity of active layers and interfaces as measured by subcritical debonding tests, and the in situ evolution of defects and fracture processes is characterized. At elevated temperatures below 50 °C in inert conditions, significant device weakening was observed, an effect we attributed to a temperature-induced P3HT:PCBM delamination mechanism from the underlying ZnO. At 50 °C in ambient conditions with UV exposure—selected to better simulate real-world environments—devices were more resistant to fracture because of an interfacial strengthening effect from increased hydrogen bonding where UV-induced Zn(OH)2 formation reinforced the interface with P3HT:PCBM. This photoinduced hydroxylation mechanism was determined from a decrease in the Zn/O ratio with increased UVA or UVB exposure, and hydroxylation was shown to directly correlate with the resistance to fracture in devices.
Original languageEnglish (US)
Pages (from-to)239-245
Number of pages7
JournalSolar Energy Materials and Solar Cells
Volume170
DOIs
StatePublished - Jun 15 2017
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-015-21
Acknowledgements: This research was supported by the Center for Advanced Molecular Photovoltaics (CAMP) supported by King Abdullah University of Science and Technology (KAUST) under award no. KUS-C1-015-21. Additional support was provided by the National Science Foundation Graduate Research Fellowship, awarded to N. Rolston under award no. DGE-1656518. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-1542152.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Effect of heat, UV radiation, and moisture on the decohesion kinetics of inverted organic solar cells'. Together they form a unique fingerprint.

Cite this