Effect of a rigid wall on the vortex induced vibration of two staggered circular cylinders

Javad Farrokhi Derakhshandeh, Maziar Arjomandi, Benjamin S. Cazzolato, Bassam Dally

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Vortex Induced Vibrations (VIVs) play a key role in a wide range of engineering applications including the extraction of renewable energy. In this paper, numerical studies of the phenomenon of VIV were conducted to investigate the flow behaviour around two identical circular cylinders. The upstream cylinder was located in the vicinity of a rigid wall and downstream one was mounted on an elastic support with one degree of freedom. The Reynolds number based on the cylinder's diameter was kept constant at 8700, while the separation between the upstream cylinder and the wall was varied. The results show that this separation distance known as the gap ratio has a significant effect on the dynamic behaviour of the upstream and downstream cylinders. Accordingly, the interaction of shear layers between the upstream cylinder and the rigid wall has a strong influence on the vortex dynamics of both cylinders, in particular, when the upstream cylinder was mounted close to the wall. In this arrangement, a jet flow produced in the wake of the upstream cylinder significantly affects the vortex shedding frequency, and the lift and drag coefficients of both cylinders. This can alter the dynamic response of the downstream cylinder and theoretical efficiency of the VIV power. © 2014 AIP Publishing LLC.
Original languageEnglish (US)
JournalJournal of Renewable and Sustainable Energy
Volume6
Issue number3
DOIs
StatePublished - Jan 1 2014
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2022-09-12

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Effect of a rigid wall on the vortex induced vibration of two staggered circular cylinders'. Together they form a unique fingerprint.

Cite this