Ecological specificity of the metagenome in a set of lower termite species supports contribution of the microbiome to adaptation of the host

Lena Waidele, Judith Korb, Christian R. Voolstra, Franck Dedeine, Fabian Staubach

Research output: Contribution to journalArticlepeer-review


Abstract Background Elucidating the interplay between hosts and their microbiomes in ecological adaptation has become a central theme in evolutionary biology. A textbook example of microbiome-mediated adaptation is the adaptation of lower termites to a wood-based diet, as they depend on their gut microbiome to digest wood. Lower termites have further adapted to different life types. Termites of the wood-dwelling life type never leave their nests and feed on a uniform diet. Termites of the foraging life type forage for food outside the nest and have access to other nutrients. Here we sought to investigate whether the microbiome that is involved in food substrate breakdown and nutrient acquisition might contribute to adaptation to these dietary differences. We reasoned that this should leave ecological imprints on the microbiome. Results We investigated the protist and bacterial microbiomes of a total of 29 replicate colonies from five termite species, covering both life types, using metagenomic shotgun sequencing. The microbiome of wood-dwelling species with a uniform wood diet was enriched for genes involved in lignocellulose degradation. Furthermore, metagenomic patterns suggest that the microbiome of wood-dwelling species relied primarily on direct fixation of atmospheric nitrogen, while the microbiome of foraging species entailed the necessary pathways to utilize nitrogen in the form of nitrate for example from soil. Conclusion Our findings are consistent with the notion that the microbiome of wood-dwelling species bears an imprint of its specialization on degrading a uniform wood diet, while the microbiome of the foraging species might reflect its adaption to access growth limiting nutrients from more diverse sources. This supports the idea that specific subsets of functions encoded by the microbiome can contribute to host adaptation.
Original languageEnglish (US)
JournalAnimal Microbiome
Issue number1
StatePublished - Oct 24 2019

Bibliographical note

KAUST Repository Item: Exported on 2021-04-10
Acknowledgements: We thank Jan Sobotnik for kindly providing P. simplex colonies, as well as Charles Darwin University (Australia), especially S. Garnett and the Horticulture and Aquaculture team for providing logistic support to collect C. secundus. The Parks and Wildlife Comission, Northern Territory, Department of the Environment, Water, Heritage and the Arts gave permission to collect (Permit number 59044) and export (Permit PWS2016-AU-001559) the termites. This work was funded by DFG grants STA1154/2-1 and KO1895/16-1. We thank Craig Michell and the KAUST Bioscience Core Lab for sequence library generation and sequencing. This study was supported by King Abdullah University of Science and Technology (KAUST) and the High Performance and Cloud Computing Group at the Zentrum fuer Datenverarbeitung of the University of Tuebingen, the state of Baden-Wuerttemberg through bwHPC and the German Research Foundation (DFG) through grant no INST 37/935-1 FUGG. We thank Karen Meusemann and the 1KITE consortium, in particular the 1KITE Blattodea group, Alexander Donath, Lars Podsiadlowski, Bernhard Misof, Xin Zhou for granting access of the transcriptome data of R. santonsensis syn. R. flavipes. We thank the anonymous reviewers for helpful comments on the manuscript.


Dive into the research topics of 'Ecological specificity of the metagenome in a set of lower termite species supports contribution of the microbiome to adaptation of the host'. Together they form a unique fingerprint.

Cite this