TY - JOUR
T1 - Dynamics and control for in-space assembly robots with large translational and rotational maneuvers
AU - Zhang, Xianliang
AU - Zhu, Weibing
AU - Wu, Xiande
AU - Song, Ting
AU - Xie, Yaen
AU - Zhao, Han
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-20
PY - 2020/9/1
Y1 - 2020/9/1
N2 - There are two major characteristics of in-space structure assembly missions. First, in order to improve the transport efficiency of assembly robot and reduce the number of structural modules, the size of each structural module is usually designed as large as possible. Second, it is necessary for autonomous assembly robot to quickly transport such large-sized flexible structural modules to the desired locations for integration. However, the coupling effect between the deformation of structural module and large-scale maneuver of robot is inevitably involved during transportation. In this paper, a dynamics modeling method for in-space assembly (ISA) robot with large translational and rotational maneuvers was proposed. The descriptions of dual quaternions were expanded, and a general expression for the dynamics model of rigid-flex system was derived to describe motion of the assembly robot. Innovation of this method is that it considered the complex coupling effect among deformation of structural modules, translational and rotational maneuvers of the assembly robot during transportation in ISA missions. On this basis, the proportional-derivative (PD) controllers were adopted as the in-space structural module assembly method. Finally, taking the ISA of antenna as an example, successful application of the proposed dynamics model and controller to the assembly mission was verified.
AB - There are two major characteristics of in-space structure assembly missions. First, in order to improve the transport efficiency of assembly robot and reduce the number of structural modules, the size of each structural module is usually designed as large as possible. Second, it is necessary for autonomous assembly robot to quickly transport such large-sized flexible structural modules to the desired locations for integration. However, the coupling effect between the deformation of structural module and large-scale maneuver of robot is inevitably involved during transportation. In this paper, a dynamics modeling method for in-space assembly (ISA) robot with large translational and rotational maneuvers was proposed. The descriptions of dual quaternions were expanded, and a general expression for the dynamics model of rigid-flex system was derived to describe motion of the assembly robot. Innovation of this method is that it considered the complex coupling effect among deformation of structural modules, translational and rotational maneuvers of the assembly robot during transportation in ISA missions. On this basis, the proportional-derivative (PD) controllers were adopted as the in-space structural module assembly method. Finally, taking the ISA of antenna as an example, successful application of the proposed dynamics model and controller to the assembly mission was verified.
UR - https://linkinghub.elsevier.com/retrieve/pii/S0094576520302794
UR - http://www.scopus.com/inward/record.url?scp=85084419681&partnerID=8YFLogxK
U2 - 10.1016/j.actaastro.2020.04.063
DO - 10.1016/j.actaastro.2020.04.063
M3 - Article
SN - 0094-5765
VL - 174
SP - 166
EP - 179
JO - Acta Astronautica
JF - Acta Astronautica
ER -