Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing

Jiaxi Cui, Daniel Daniel, Alison Grinthal, Kaixiang Lin, Joanna Aizenberg

Research output: Contribution to journalArticlepeer-review

250 Scopus citations

Abstract

Approaches for regulated fluid secretion, which typically rely on fluid encapsulation and release from a shelled compartment, do not usually allow a fine continuous modulation of secretion, and can be difficult to adapt for monitoring or function-integration purposes. Here, we report self-regulated, self-reporting secretion systems consisting of liquid-storage compartments in a supramolecular polymer-gel matrix with a thin liquid layer on top, and demonstrate that dynamic liquid exchange between the compartments, matrix and surface layer allows repeated, responsive self-lubrication of the surface and cooperative healing of the matrix. Depletion of the surface liquid or local material damage induces secretion of the stored liquid via a dynamic feedback between polymer crosslinking, droplet shrinkage and liquid transport that can be read out through changes in the system's optical transparency. We foresee diverse applications in fluid delivery, wetting and adhesion control, and material self-repair.
Original languageEnglish (US)
Pages (from-to)790-795
Number of pages6
JournalNature Materials
Volume14
Issue number8
DOIs
StatePublished - Aug 28 2015
Externally publishedYes

Bibliographical note

Generated from Scopus record by KAUST IRTS on 2023-02-14

ASJC Scopus subject areas

  • Mechanics of Materials
  • General Materials Science
  • General Chemistry
  • Mechanical Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing'. Together they form a unique fingerprint.

Cite this