TY - JOUR
T1 - Dynamic Characterization of a Low Cost Microwave Water-Cut Sensor in a Flow Loop
AU - Karimi, Muhammad Akram
AU - Arsalan, Muhammad
AU - Shamim, Atif
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2017/3/31
Y1 - 2017/3/31
N2 - Inline precise measurement of water fraction in oil (i.e. water-cut [WC]) finds numerous applications in oil and gas industry. This paper presents the characterization of an extremely low cost, completely non-intrusive and full range microwave water-cut sensor based upon pipe conformable microwave T-resonator. A 10″ microwave stub based T-resonator has been implemented directly on the pipe surface whose resonance frequency changes in the frequency band of 90MHz–190MHz (111%) with changing water fraction in oil. The designed sensor is capable of detecting even small changes in WC with a resolution of 0.07% at low WC and 0.5% WC at high WC. The performance of the microwave WC sensor has been tested in an in-house flow loop. The proposed WC sensor has been characterized over full water-cut range (0%–100%) not only in vertical but also in horizontal orientation. The sensor has shown predictable response in both orientations with huge frequency shift. Moreover, flow rate effect has also been investigated on the proposed WC sensor’s performance and it has been found that the sensor’s repeatability is within 2.5% WC for variable flow rates.
AB - Inline precise measurement of water fraction in oil (i.e. water-cut [WC]) finds numerous applications in oil and gas industry. This paper presents the characterization of an extremely low cost, completely non-intrusive and full range microwave water-cut sensor based upon pipe conformable microwave T-resonator. A 10″ microwave stub based T-resonator has been implemented directly on the pipe surface whose resonance frequency changes in the frequency band of 90MHz–190MHz (111%) with changing water fraction in oil. The designed sensor is capable of detecting even small changes in WC with a resolution of 0.07% at low WC and 0.5% WC at high WC. The performance of the microwave WC sensor has been tested in an in-house flow loop. The proposed WC sensor has been characterized over full water-cut range (0%–100%) not only in vertical but also in horizontal orientation. The sensor has shown predictable response in both orientations with huge frequency shift. Moreover, flow rate effect has also been investigated on the proposed WC sensor’s performance and it has been found that the sensor’s repeatability is within 2.5% WC for variable flow rates.
UR - http://hdl.handle.net/10754/623078
UR - http://www.sciencedirect.com/science/article/pii/S0924424716307208
UR - http://www.scopus.com/inward/record.url?scp=85018730367&partnerID=8YFLogxK
U2 - 10.1016/j.sna.2017.03.016
DO - 10.1016/j.sna.2017.03.016
M3 - Article
SN - 0924-4247
VL - 260
SP - 146
EP - 152
JO - Sensors and Actuators A: Physical
JF - Sensors and Actuators A: Physical
ER -