Abstract
In this work, a non-fused electron acceptor with near-infrared absorption was introduced into double-cable conjugated polymers for single-component organic solar cells (SCOSCs). The non-fused electron acceptor contains a simple thienyl-phenyl-thienyl core with 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC) as the end group, which was used as the side unit to create double-cable conjugated polymers. In addition, poly(benzodithiophene) was selected as the conjugated backbone, in which the number of chlorine (Cl) atoms was varied to tune the optical and electronic properties. The new double-cable polymers were successfully applied in SCOSCs, providing an efficiency of over 8% with a broad photoresponse from 300 to 800 nm. When the number of Cl atoms on the repeat unit was increased from 2 to 3, the open-circuit voltage was enhanced to 1.01 V, yielding a low voltage loss of 0.59 eV, while the efficiency was reduced to 5.28%. The reduced performance is explained by the increased charge recombination in this polymer, as observed by transient absorption spectroscopy. This work reports a set of IC-based NIR double-cable conjugated polymers, which inspire material design toward more efficient SCOSCs.
Original language | English (US) |
---|---|
Journal | Macromolecules |
DOIs | |
State | Published - Jan 26 2023 |
Bibliographical note
KAUST Repository Item: Exported on 2023-01-30Acknowledgements: This study is jointly supported by the Beijing Natural Science Foundation (JQ21006) and NSFC (52073016, 92163128, 51973031, 51933001) of China. This work was further supported by the Fundamental Research Funds for the Central Universities (buctrc201828, XK1802-2) and the Opening Foundation of State Key Laboratory of Organic–Inorganic Composites of Beijing University of Chemical Technology (oic-202201006). This work was performed in part at the SAXS/WAXS beamline at the Australian Synchrotron, part of ANSTO. (65) The research reported in this publication was supported by funding from the King Abdullah University of Science and Technology (KAUST).
ASJC Scopus subject areas
- Materials Chemistry
- Organic Chemistry
- Polymers and Plastics
- Inorganic Chemistry