Dirac spin-orbit torques and charge pumping at the surface of topological insulators

Papa Birame Ndiaye, Collins Ashu Akosa, M. H. Fischer, A. Vaezi, E.-A. Kim, Aurelien Manchon

Research output: Contribution to journalArticlepeer-review

69 Scopus citations


We address the nature of spin-orbit torques at the magnetic surfaces of topological insulators using the linear-response theory. We find that the so-called Dirac torques in such systems possess a different symmetry compared to their Rashba counterpart, as well as a high anisotropy as a function of the magnetization direction. In particular, the damping torque vanishes when the magnetization lies in the plane of the topological-insulator surface. We also show that the Onsager reciprocal of the spin-orbit torque, the charge pumping, induces an enhanced anisotropic damping. Via a macrospin model, we numerically demonstrate that these features have important consequences in terms of magnetization switching.
Original languageEnglish (US)
JournalPhysical Review B
Issue number1
StatePublished - Jul 6 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: P.B.N. and A.M. were supported by the King Abdullah University of Science and Technology (KAUST). P.B.N. thanks Z. T. Ndiaye for the fruitful discussions and valuable technical support, and A.M. acknowledges inspiring discussions with H. Yang, E. Y. Tsymbal, and J. Zhang. E.-A. K. was supported by NSF CAREER Award No. DMR-0955822 and by the Cornell Center for Materials Research with funding from the NSF MRSEC program (Grant No. DMR-1120296). M.H.F. acknowledges support from the Swiss Society of Friends of the Weizmann Institute of Science.


Dive into the research topics of 'Dirac spin-orbit torques and charge pumping at the surface of topological insulators'. Together they form a unique fingerprint.

Cite this