Abstract
Dimethyl ether (DME) is a promising fuel for use in low-temperature portable hydrogen production, domestic applications, or diesel engines. It burns with less emissions than conventional fuels and has properties similar to LPG in terms of storage and transport, rendering it effective in many strategies for combating climate change. In this study we investigated the partial and total oxidation of DME over 5 wt% Rh/Al2O3 at low temperatures (215 to 320 °C), relevant to portable and domestic energy applications as well as the after-treatment systems of DME-powered engines. We captured the effects of temperature, flow rate, and inlet feed composition on the reactivity. For partial oxidation, we utilized the stagnation-flow reactor geometry to isolate the oxidation zone from the reforming zone. We discuss the reaction order with respect to DME and O2 and provide activation energy values under kinetics control. We also provide data where internal and external mass transfer limitations are present to examine the diffusive-convective transport near the catalyst surface, not easily done in three-dimensional environments such as packed beds. The experimental data we provide here pave the way for accurate kinetic modeling of DME partial and total oxidation on Rh/Al2O3, for reactor design and optimization as well as rational catalyst design.
Original language | English (US) |
---|---|
Article number | 127302 |
Journal | Fuel |
Volume | 338 |
DOIs | |
State | Published - Apr 15 2023 |
Bibliographical note
Publisher Copyright:© 2022 Elsevier Ltd
Keywords
- Dimethyl ether
- Kinetics
- Oxidation
- Partial oxidation
- Rhodium
- Stagnation-flow
ASJC Scopus subject areas
- General Chemical Engineering
- Fuel Technology
- Energy Engineering and Power Technology
- Organic Chemistry