Device Performance of Emerging Photovoltaic Materials (Version 1)

Osbel Almora, Derya Baran, Guillermo C. Bazan, Christian Berger, Carlos I. Cabrera, Kylie R. Catchpole, Sule Erten-Ela, Fei Guo, Jens Hauch, Anita Ho-Baillie, T. Jesper Jacobsson, Rene A. J. Janssen, Thomas Kirchartz, Nikos Kopidakis, Yongfang Li, Maria A. Loi, Richard R. Lunt, Xavier Mathew, Michael D. McGehee, Jie MinDavid B. Mitzi, Mohammad K. Nazeeruddin, Jenny Nelson, Ana F. Nogueira, Ulrich W. Paetzold, Nam-Gyu Park, Barry P. Rand, Uwe Rau, Henry J. Snaith, Eva Unger, Lídice Vaillant-Roca, Hin-Lap Yip, Christoph J. Brabec

Research output: Contribution to journalArticlepeer-review

113 Scopus citations


Emerging photovoltaics (PVs) focus on a variety of applications complementing large scale electricity generation. Organic, dye-sensitized, and some perovskite solar cells are considered in building integration, greenhouses, wearable, and indoor applications, thereby motivating research on flexible, transparent, semitransparent, and multi-junction PVs. Nevertheless, it can be very time consuming to find or develop an up-to-date overview of the state-of-the-art performance for these systems and applications. Two important resources for recording research cells efficiencies are the National Renewable Energy Laboratory chart and the efficiency tables compiled biannually by Martin Green and colleagues. Both publications provide an effective coverage over the established technologies, bridging research and industry. An alternative approach is proposed here summarizing the best reports in the diverse research subjects for emerging PVs. Best performance parameters are provided as a function of the photovoltaic bandgap energy for each technology and application, and are put into perspective using, e.g., the Shockley–Queisser limit. In all cases, the reported data correspond to published and/or properly described certified results, with enough details provided for prospective data reproduction. Additionally, the stability test energy yield is included as an analysis parameter among state-of-the-art emerging PVs.
Original languageEnglish (US)
Pages (from-to)2002774
JournalAdvanced Energy Materials
StatePublished - Dec 4 2020

Bibliographical note

KAUST Repository Item: Exported on 2020-12-07
Acknowledgements: O.A. acknowledges the financial support from the VDI/VD Innovation + Technik GmbH (Project-title: PV-ZUM) and the SAOT funded by the German Research Foundation (DFG) in the framework of the German excellence initiative. C.J.B. acknowledges funding from DFG within INST 90/917-1 FUGG, the SFB 953 (DFG, project no. 182849149) and the IGK 2495 (Energy Conversion Systems—from Materials to Devices). C.J.B. further acknowledges the grants “ELF-PV—Design and development of solution processed functional materials for the next generations of PV technologies” (No. 44-6521a/20/4) and “Solar Factory of the Future” (FKZ 20.2-3410.5-4-5) and the SolTech Initiative by the Bavarian State Government. A.F.N. acknowledges support from FAPESP (Grant 2017/11986-5), Shell and the strategic importance of the support given by ANP (Brazil's National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. R.R.L. gratefully acknowledges support from the National Science Foundation under grant CBET-1702591. N.K. acknowledges funding by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office, Agreement Number 34351. J.N. thanks the European Research Council for support under the European Union's Horizon 2020 research and innovation program (grant agreement No 742708).


Dive into the research topics of 'Device Performance of Emerging Photovoltaic Materials (Version 1)'. Together they form a unique fingerprint.

Cite this