Abstract
The single crystal elastic constants Cij and the shear and adiabatic bulk modulus of a natural portlandite (Ca(OH)2) crystal were determined by Brillouin spectroscopy at ambient conditions. The elastic constants, expressed in GPa, are: C11 = 102.0(± 2.0), C12 = 32.1(± 1.0), C13 = 8.4(± 0.4), C14 = 4.5(± 0.2), C33 = 33.6(± 0.7), C44 = 12.0(± 0.3), C66 = (C11-C12)/2 = 35.0(± 1.1), where the numbers in parentheses are 1σ standard deviations. The Reuss bounds of the adiabatic bulk and shear moduli are K0S = 26.0(± 0.3) GPa and G0 = 17.5(± 0.4) GPa, respectively, while the Voigt bounds of these moduli are K0S = 37.3(± 0.4) GPa and G0 = 24.4(± 0.3) GPa. The Reuss and Voigt bounds for the aggregate Young's modulus are 42.8(± 1.0) GPa and 60.0(± 0.8) GPa respectively, while the aggregate Poisson's ratio is equal to 0.23(± 0.01). Portlandite exhibits both large compressional elastic anisotropy with C11/C33 = 3.03(± 0.09) equivalent to that of the isostructural hydroxide brucite (Mg(OH)2), and large shear anisotropy with C66/C44 = 2.92(± 0.12) which is 11% larger than brucite. The comparison between the bulk modulus of portlandite and that of lime (CaO) confirms a systematic linear relationship between the bulk moduli of brucite-type simple hydroxides and the corresponding NaCl-type oxides. © 2008 Elsevier Ltd. All rights reserved.
Original language | English (US) |
---|---|
Pages (from-to) | 1148-1153 |
Number of pages | 6 |
Journal | Cement and Concrete Research |
Volume | 38 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2008 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: The GeoForschungsZentrum Potsdam is part of the Helmholtz Gemeinschaft. P.J.M.M. and H.R.W. appreciate support from the KAUST.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.