TY - JOUR
T1 - Detachment mechanisms of turbulent non-premixed jet flames at atmospheric and elevated pressures
AU - Guiberti, Thibault
AU - Boyette, Wesley
AU - Masri, Assaad R.
AU - Roberts, William L.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).
PY - 2019/1/26
Y1 - 2019/1/26
N2 - The stability limits of a turbulent flame in a practical combustor are important characteristics that influence its performance. The mechanisms controlling the stability limits of turbulent non-premixed flames are examined here in the canonical configuration of a fuel jet in co-flow air. This study focuses on the conditions leading to the detachment of flames from the injector nozzle by means of an experimental parametric study in which pressure (1 ≤ P ≤ 10 bar), fuel (methane and ethane), nozzle wall thickness (t = 0.20 mm, 0.58 mm, and 0.89 mm), jet velocity (0.5 ≤ Uj ≤ 16.5 m s−1), and co-flow velocity (Uc = 0.3 m s−1, 0.6 m s−1, and 0.9 m s−1) are varied. It is shown that the mechanism leading to detachment depends on the ratio of the nozzle wall thickness to the laminar flame thickness. If this ratio is smaller than 3, the nozzle is “thin” and type I detachment occurs (flame base stability lifting). In this case, the detachment velocity decreases with pressure and is proportional to the laminar burning velocity. If the ratio is larger than 3, the nozzle is “thick” and type II detachment occurs (local flame extinction lifting). Then, the detachment velocity is controlled by the extinction strain rate. Experiments also show that the Kolmogorov scale of turbulence regulates local flame extinction and type II detachment and a model is proposed to predict detachment for any fuel, pressure, and nozzle wall thickness using the computed extinction strain rate and the Kolmogorov time scale. Finally, the data show that elevating pressure allows stabilizing attached non-premixed jet flames with high Reynolds numbers without the need for complex stabilization strategies such as pilot flames, swirl, or oxygen/hydrogen enrichment. Pressure allows studying flame/turbulence interactions at Reynolds numbers relevant to practical applications while conserving simple configurations amenable to diagnostics and modeling.
AB - The stability limits of a turbulent flame in a practical combustor are important characteristics that influence its performance. The mechanisms controlling the stability limits of turbulent non-premixed flames are examined here in the canonical configuration of a fuel jet in co-flow air. This study focuses on the conditions leading to the detachment of flames from the injector nozzle by means of an experimental parametric study in which pressure (1 ≤ P ≤ 10 bar), fuel (methane and ethane), nozzle wall thickness (t = 0.20 mm, 0.58 mm, and 0.89 mm), jet velocity (0.5 ≤ Uj ≤ 16.5 m s−1), and co-flow velocity (Uc = 0.3 m s−1, 0.6 m s−1, and 0.9 m s−1) are varied. It is shown that the mechanism leading to detachment depends on the ratio of the nozzle wall thickness to the laminar flame thickness. If this ratio is smaller than 3, the nozzle is “thin” and type I detachment occurs (flame base stability lifting). In this case, the detachment velocity decreases with pressure and is proportional to the laminar burning velocity. If the ratio is larger than 3, the nozzle is “thick” and type II detachment occurs (local flame extinction lifting). Then, the detachment velocity is controlled by the extinction strain rate. Experiments also show that the Kolmogorov scale of turbulence regulates local flame extinction and type II detachment and a model is proposed to predict detachment for any fuel, pressure, and nozzle wall thickness using the computed extinction strain rate and the Kolmogorov time scale. Finally, the data show that elevating pressure allows stabilizing attached non-premixed jet flames with high Reynolds numbers without the need for complex stabilization strategies such as pilot flames, swirl, or oxygen/hydrogen enrichment. Pressure allows studying flame/turbulence interactions at Reynolds numbers relevant to practical applications while conserving simple configurations amenable to diagnostics and modeling.
UR - http://hdl.handle.net/10754/630959
UR - https://www.sciencedirect.com/science/article/pii/S0010218019300379?via%3Dihub
UR - http://www.scopus.com/inward/record.url?scp=85060455467&partnerID=8YFLogxK
U2 - 10.1016/j.combustflame.2019.01.019
DO - 10.1016/j.combustflame.2019.01.019
M3 - Article
AN - SCOPUS:85060455467
VL - 202
SP - 219
EP - 227
JO - Combustion and Flame
JF - Combustion and Flame
SN - 0010-2180
ER -