Designing Sub-2 nm Organosilica Nanohybrids for Far-Field Super-Resolution Imaging

Liangliang Liang, Wei Yan, Xian Qin, Xiao Peng, Han Feng, Yu Wang, Ziyu Zhu, Lingmei Liu, Yu Han, Qinghua Xu, Junle Qu, Xiaogang Liu

Research output: Contribution to journalArticlepeer-review


Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub-2 nm size and near-unity quantum yield are presented. The spin–orbit coupling (SOC) of heavy-atom-rich organic fluorophores is mitigated through a silane-molecule-mediated condensation/ dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot. When harnessed as STED nanoprobes, these fluorescent nanohybrids show intense photoluminescence, high biocompatibility, and long-term photostability. Taking advantage of the low-power excitation (0.5 mW), prolonged singlet-state lifetime, and negligible depletion-induced re-excitation, these STED nanohybrids present high depletion efficiency (> 96%), extremely low saturation intensity (0.54 mW, ca.0.188 MWcm@2), and ultra-high lateral resolution (ca. lem/28).
Original languageEnglish (US)
Pages (from-to)756-761
Number of pages6
JournalAngewandte Chemie
Issue number2
StatePublished - Nov 27 2019

Bibliographical note

KAUST Repository Item: Exported on 2021-04-19
Acknowledgements: This work is supported by the Singapore Ministry of Education (MOE2017-T2-2-110), Agency for Science, Technology and Research (A*STAR) (Grant NO. A1883c0011), National Research Foundation, Prime MinisterQs Office, Singapore under its Competitive Research Program (Award No. NRF-CRP15-2015-03) and under the NRF Investigatorship programme (Award No. NRF-NRFI05-2019-0003), the National Key R&D Program of China (2017YFA0700500), the National Natural Science Foundation of China (21771135, 21701119, 61705137, 81727804, 61975127, 31771584),the Science and Technology Project of Shenzhen(KQJSCX20180328093614762). The computational work for
this article was supported by resources of the High Performance Computing System at National University of Singapore.

ASJC Scopus subject areas

  • Medicine(all)


Dive into the research topics of 'Designing Sub-2 nm Organosilica Nanohybrids for Far-Field Super-Resolution Imaging'. Together they form a unique fingerprint.

Cite this