Abstract
Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub-2 nm size and near-unity quantum yield are presented. The spin–orbit coupling (SOC) of heavy-atom-rich organic fluorophores is mitigated through a silane-molecule-mediated condensation/
dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot. When harnessed as STED nanoprobes, these fluorescent nanohybrids show intense photoluminescence, high biocompatibility, and long-term photostability. Taking advantage of the low-power excitation (0.5 mW), prolonged singlet-state lifetime, and negligible depletion-induced re-excitation, these STED nanohybrids present high depletion efficiency (> 96%), extremely low saturation intensity (0.54 mW, ca.0.188 MWcm@2), and ultra-high lateral resolution (ca. lem/28).
Original language | English (US) |
---|---|
Pages (from-to) | 756-761 |
Number of pages | 6 |
Journal | Angewandte Chemie |
Volume | 132 |
Issue number | 2 |
DOIs | |
State | Published - Nov 27 2019 |
Bibliographical note
KAUST Repository Item: Exported on 2021-04-19Acknowledgements: This work is supported by the Singapore Ministry of Education (MOE2017-T2-2-110), Agency for Science, Technology and Research (A*STAR) (Grant NO. A1883c0011), National Research Foundation, Prime MinisterQs Office, Singapore under its Competitive Research Program (Award No. NRF-CRP15-2015-03) and under the NRF Investigatorship programme (Award No. NRF-NRFI05-2019-0003), the National Key R&D Program of China (2017YFA0700500), the National Natural Science Foundation of China (21771135, 21701119, 61705137, 81727804, 61975127, 31771584),the Science and Technology Project of Shenzhen(KQJSCX20180328093614762). The computational work for
this article was supported by resources of the High Performance Computing System at National University of Singapore.
ASJC Scopus subject areas
- General Medicine