Abstract
The feasibility of a chemically amplified fully water-soluble negative-tone resist based upon the cross-linking of a poly(vinyl alcohol) (PVA) matrix resin has been demonstrated. Two-component resists incorporating PVA and (2,4-dihydroxyphenyl)dimethylsulfonium triflate as a water-soluble photoacid generator were formulated in deionized water and spincoated onto bare silicon wafers. Negative-tone images were obtained upon irradiation at 254 nm, postbaking, and subsequent development in pure water. The two-component resist suffered from swelling during development, but improved performance was obtained through the addition of a cross-linking agent, hexamethoxymethylmelamine (HMMM). The resulting three-component, water-soluble resist was able to resolve micron-sized images using a 248 nm stepper, at a dose of ca. 200 mJ/cm2. Model studies conducted using 13C NMR monitoring with 2,4-pentanediol as a model for PVA showed that under acidic catalysis HMMM reacts to form active electrophilic species that add to the diol, affording ether linkages with concomitant liberation of methanol.
Original language | English (US) |
---|---|
Pages (from-to) | 719-725 |
Number of pages | 7 |
Journal | Chemistry of Materials |
Volume | 11 |
Issue number | 3 |
DOIs | |
State | Published - 1999 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering
- Materials Chemistry