Abstract
Thermoelectric (TE) materials could provide an efficient means for recovering waste heat energy if a low cost, scalable, and high figure-of-merit material could be fabricated. Here, we report, for the first time, a wet ball-milling method to achieve high-performance two-dimensional (2D) semi-metallic TiS2 nanoplatelets. TiO2 is milled, annealed, and sintered with sulfur under high pressure. The addition of a small amount of sulfur (S) powder during the annealing period prevents sulfur deficiency in the sintered compact, resulting in the formation of a near-stoichiometric TiS2 composition. The formation of 2D TiS2 nanoplatelets was confirmed by X-ray diffraction, field emission scanning electron microscopy with energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. The TE properties were measured in the temperature range of 25–100 °C. Further, we obtain that the prepared TiS2 has as high figure of merit as 0.35 at 100 °C. Novel wet ball mill processing strategies for the development of high-performance 2D materials such as TiS2 make it possible to incorporate these materials for scaled-up device fabrication.
Original language | English (US) |
---|---|
Pages (from-to) | 8822-8832 |
Number of pages | 11 |
Journal | Journal of Materials Science: Materials in Electronics |
Volume | 33 |
Issue number | 11 |
DOIs | |
State | Published - Apr 2022 |
Bibliographical note
Publisher Copyright:© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Electrical and Electronic Engineering