TY - JOUR
T1 - Design and Synthesis of Polyimides Based on Carbocyclic Pseudo-Tröger’s Base-Derived Dianhydrides for Membrane Gas Separation Applications
AU - Ma, Xiaohua
AU - Abdulhamid, Mahmoud A.
AU - Pinnau, Ingo
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work was supported by funding from King Abdullah University of Science and Technology (KAUST).
PY - 2017/7/24
Y1 - 2017/7/24
N2 - Two novel carbocyclic pseudo-Tröger’s base-derived dianhydrides, 5,6,11,12-tetrahydro-5,11-methanodibenzo[a,e][8]annulene-2,3,8,9-tetracarboxylic anhydride (CTB1) and its dione-substituted analogue 6,12-dioxo-5,6,11,12-tetrahydro-5,11-methanodibenzo[a,e][8]annulene-2,3,8,9-tetracarboxylic dianhydride (CTB2), were made and used for the synthesis of soluble polyimides of intrinsic microporosity with 3,3′-dimethylnaphthidine (DMN). The polyimides CTB1-DMN and CTB2-DMN exhibited excellent thermal stability of ∼500 °C and high BET surface areas of 580 and 469 m2 g–1, respectively. A freshly made dione-substituted CTB2-DMN membrane demonstrated promising gas separation performance with O2 permeability of 206 barrer and O2/N2 selectivity of 5.2. A higher O2 permeability of 320 barrer and lower O2/N2 selectivity of 4.2 were observed for a fresh CTB1-DMN film due to its higher surface area and less tightly packed structure as indicated by weaker charge-transfer complex interactions. Physical aging over 60 days resulted in reduction in gas permeability and moderately enhanced selectivity. CTB2-DMN exhibited notable performance with gas permeation data located between the 2008 and 2015 permeability/selectivity upper bounds for O2/N2 and H2/CH4.
AB - Two novel carbocyclic pseudo-Tröger’s base-derived dianhydrides, 5,6,11,12-tetrahydro-5,11-methanodibenzo[a,e][8]annulene-2,3,8,9-tetracarboxylic anhydride (CTB1) and its dione-substituted analogue 6,12-dioxo-5,6,11,12-tetrahydro-5,11-methanodibenzo[a,e][8]annulene-2,3,8,9-tetracarboxylic dianhydride (CTB2), were made and used for the synthesis of soluble polyimides of intrinsic microporosity with 3,3′-dimethylnaphthidine (DMN). The polyimides CTB1-DMN and CTB2-DMN exhibited excellent thermal stability of ∼500 °C and high BET surface areas of 580 and 469 m2 g–1, respectively. A freshly made dione-substituted CTB2-DMN membrane demonstrated promising gas separation performance with O2 permeability of 206 barrer and O2/N2 selectivity of 5.2. A higher O2 permeability of 320 barrer and lower O2/N2 selectivity of 4.2 were observed for a fresh CTB1-DMN film due to its higher surface area and less tightly packed structure as indicated by weaker charge-transfer complex interactions. Physical aging over 60 days resulted in reduction in gas permeability and moderately enhanced selectivity. CTB2-DMN exhibited notable performance with gas permeation data located between the 2008 and 2015 permeability/selectivity upper bounds for O2/N2 and H2/CH4.
UR - http://hdl.handle.net/10754/625700
UR - http://pubs.acs.org/doi/full/10.1021/acs.macromol.7b01054
UR - http://www.scopus.com/inward/record.url?scp=85027050523&partnerID=8YFLogxK
U2 - 10.1021/acs.macromol.7b01054
DO - 10.1021/acs.macromol.7b01054
M3 - Article
SN - 0024-9297
VL - 50
SP - 5850
EP - 5857
JO - Macromolecules
JF - Macromolecules
IS - 15
ER -