Derivatives of Bis(trifluoromethyl)biphenyl and Various Donor Noieties Exhibiting Dual State Emission

R. Keruckiene, N. Kusas, L. Dvylys, E. Skuodis, V. E. Matulis, E. G. Ragoyja, D. A. Lyakhov, I. Klymenko, J. V. Grazulevicius

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

A series of bis(trifluoromethyl)biphenyl derivatives bearing carbazole, dimethylacridan, and phenothiazine donor moieties were designed and synthesized via Ullman coupling reaction. The compounds were found to be capable of forming molecular glasses with glass transition temperatures ranging from 152 °C to 244 °C. Significant dual-state emission was revealed for the synthesized compounds. Radiative decay of singlet and triplet states emerged from restricted molecular motion in solid state. The phenothiazinyl-substituted bis(trifluoromethyl)biphenyl derivative induces particular interest, as it exhibits room-temperature phosphorescence. This makes it promising for oxygen sensing applications. The theoretical work revealed that carbazolyl disubstituted bis(trifluoromethyl)biphenyl has the largest deviation of the planes of donor and acceptor fragments from 90°, which leads to larger overlap of electron density in the ground and excited states and larger oscillator strength. The calculated values of dipole moment and charge transfer during excitation were found to be the lowest for phenothiazinyl disubstituted bis(trifluoromethyl)biphenyl. This result explains the experimental fact that the solvent polarity has the least effect on the fluorescent spectrum of this compound.
Original languageEnglish (US)
Pages (from-to)118502
JournalJournal of Luminescence
Volume241
DOIs
StatePublished - Sep 29 2021

Bibliographical note

KAUST Repository Item: Exported on 2021-10-18
Acknowledgements: R.K. acknowledges funding from European Social Fund (project No. 09.3.3-LMT-K-712-19-0033) under grant agreement with the Research Council of Lithuania (LMTLT). All Gaussian16 computations were performed on KAUST's Ibex HPC. The authors thank the KAUST Supercomputing Core Lab team for assistance with execution tasks on Skylake nodes.

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Atomic and Molecular Physics, and Optics
  • General Chemistry
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Derivatives of Bis(trifluoromethyl)biphenyl and Various Donor Noieties Exhibiting Dual State Emission'. Together they form a unique fingerprint.

Cite this