Abstract
Continuous-wave time-of-flight (ToF) cameras show great promise as low-cost depth image sensors in mobile applications. However, they also suffer from several challenges, including limited illumination intensity, which mandates the use of large numerical aperture lenses, and thus results in a shallow depth of field, making it difficult to capture scenes with large variations in depth. Another shortcoming is the limited spatial resolution of currently available ToF sensors. In this paper we analyze the image formation model for blurred ToF images. By directly working with raw sensor measurements but regularizing the recovered depth and amplitude images, we are able to simultaneously deblur and super-resolve the output of ToF cameras. Our method outperforms existing methods on both synthetic and real datasets. In the future our algorithm should extend easily to cameras that do not follow the cosine model of continuous-wave sensors, as well as to multi-frequency or multi-phase imaging employed in more recent ToF cameras.
Original language | English (US) |
---|---|
Title of host publication | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 |
Publisher | IEEE Computer Society |
Pages | 2376-2384 |
Number of pages | 9 |
ISBN (Electronic) | 9781467369640 |
DOIs | |
State | Published - Oct 14 2015 |
Event | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 - Boston, United States Duration: Jun 7 2015 → Jun 12 2015 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 07-12-June-2015 |
ISSN (Print) | 1063-6919 |
Conference
Conference | IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015 |
---|---|
Country/Territory | United States |
City | Boston |
Period | 06/7/15 → 06/12/15 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition