TY - JOUR
T1 - Deep Learning Based Frequency-Selective Channel Estimation for Hybrid mmWave MIMO Systems
AU - Abdallah, Asmaa
AU - Celik, Abdulkadir
AU - Mansour, Mohammad M.
AU - Eltawil, Ahmed
N1 - KAUST Repository Item: Exported on 2021-11-11
PY - 2021
Y1 - 2021
N2 - Millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems typically employ hybrid mixed signal processing to avoid expensive hardware and high training overheads. However, the lack of fully digital beamforming at mmWave bands imposes additional challenges in channel estimation. Prior art on hybrid architectures has mainly focused on greedy optimization algorithms to estimate frequency-flat narrowband mmWave channels, despite the fact that in practice, the large bandwidth associated with mmWave channels results in frequency-selective channels. In this paper, we consider a frequency-selective wideband mmWave system and propose two deep learning (DL) compressive sensing (CS) based algorithms for channel estimation. The proposed algorithms learn critical apriori information from training data to provide highly accurate channel estimates with low training overhead. In the first approach, a DL-CS based algorithm simultaneously estimates the channel supports in the frequency domain, which are then used for channel reconstruction. The second approach exploits the estimated supports to apply a low-complexity multi-resolution fine-tuning method to further enhance the estimation performance. Simulation results demonstrate that the proposed DL-based schemes significantly outperform conventional orthogonal matching pursuit (OMP) techniques in terms of the normalized mean-squared error (NMSE), computational complexity, and spectral efficiency, particularly in the low signal-to-noise ratio regime. When compared to OMP approaches that achieve an NMSE gap of {4-10} dB with respect to the Cramer Rao Lower Bound (CRLB), the proposed algorithms reduce the CRLB gap to only {1-1.5} dB, while reducing complexity by two orders of magnitude.
AB - Millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems typically employ hybrid mixed signal processing to avoid expensive hardware and high training overheads. However, the lack of fully digital beamforming at mmWave bands imposes additional challenges in channel estimation. Prior art on hybrid architectures has mainly focused on greedy optimization algorithms to estimate frequency-flat narrowband mmWave channels, despite the fact that in practice, the large bandwidth associated with mmWave channels results in frequency-selective channels. In this paper, we consider a frequency-selective wideband mmWave system and propose two deep learning (DL) compressive sensing (CS) based algorithms for channel estimation. The proposed algorithms learn critical apriori information from training data to provide highly accurate channel estimates with low training overhead. In the first approach, a DL-CS based algorithm simultaneously estimates the channel supports in the frequency domain, which are then used for channel reconstruction. The second approach exploits the estimated supports to apply a low-complexity multi-resolution fine-tuning method to further enhance the estimation performance. Simulation results demonstrate that the proposed DL-based schemes significantly outperform conventional orthogonal matching pursuit (OMP) techniques in terms of the normalized mean-squared error (NMSE), computational complexity, and spectral efficiency, particularly in the low signal-to-noise ratio regime. When compared to OMP approaches that achieve an NMSE gap of {4-10} dB with respect to the Cramer Rao Lower Bound (CRLB), the proposed algorithms reduce the CRLB gap to only {1-1.5} dB, while reducing complexity by two orders of magnitude.
UR - http://hdl.handle.net/10754/668446
UR - https://ieeexplore.ieee.org/document/9605216/
U2 - 10.1109/TWC.2021.3124202
DO - 10.1109/TWC.2021.3124202
M3 - Article
SN - 1558-2248
SP - 1
EP - 1
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
ER -