Deep-Learning based design and modeling for chiro-optical dielectric metasurfaces

Sadia Noureen, Hafiz Saad Khaliq, Muhammad Fizan, Muhammad Zubair, Muhammad Qasim Mehmood, Yehia Massoud

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Nanophotonics employ chiro-optical effects for a variety of applications, including advanced imaging and molecular detection and separation. Due to their outstanding qualities in light-matter interactions, planar metasurfaces comprised of subwavelength meta-atoms have attracted a lot of attention. Despite of the vast potential of metasurfaces, achievement of large chiro-optical effects compactly on-chip at the visible wavelengths is still hindered by its complex design and optimization procedure. Deep-learning (DL) based modelling techniques have been put out as an alternative to the time-consuming and computationally demanding traditional design and optimization procedure of metasurfaces during the past few years. In this work, we have employed deep-learning based forward and inverse models to design and optimize achiral nano-fins to achieve giant chiro-optical affects at the visible wavelengths. A regression based forward neural network is proposed, that takes all the structural dimensions of the achiral nano-fins as input and trained separately to predict three different types of asymmetric transmissions i.e., TLL, TLR and TRL and circular dichroism. An inverse design model is also demonstrated that simultaneously considers all the three target transmissions and optimizes the dimensions of the achiral nano-fins in such a way that they experience constructive and destructive interference, resulting in an average circular dichroism of more than 60% and 70% asymmetric transmission. With potential applications in chiral polarizers for optical displays, flat integrated polarization shifter’s exhibiting high efficiency, chiral-metasurface sensors and chiral beam splitters, the suggested DL-enabled design techniques ease the realization of op-chip giant chiro-optical response through planar metasurface.

Original languageEnglish (US)
Title of host publicationNanophotonics and Micro/Nano Optics IX
EditorsZhiping Zhou, Kazumi Wada, Limin Tong
PublisherSPIE
ISBN (Electronic)9781510667952
DOIs
StatePublished - 2023
EventNanophotonics and Micro/Nano Optics IX 2023 - Beijing, China
Duration: Oct 14 2023Oct 16 2023

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12773
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceNanophotonics and Micro/Nano Optics IX 2023
Country/TerritoryChina
CityBeijing
Period10/14/2310/16/23

Bibliographical note

Publisher Copyright:
© 2023 SPIE. All rights reserved.

Keywords

  • asymmetric-transmission
  • Chiro-optical
  • circular-dichroism
  • deep-learning
  • metasurfaces

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Deep-Learning based design and modeling for chiro-optical dielectric metasurfaces'. Together they form a unique fingerprint.

Cite this