Abstract
This book explores, within the framework of rough set theory, the complexity of decision trees and decision rule systems and the relationships between them for problems over information systems, for decision tables from closed classes, and for problems involving formal languages. Decision trees and systems of decision rules are widely used as means of representing knowledge, as classifiers that predict decisions for new objects, as well as algorithms for solving various problems of fault diagnosis, combinatorial optimization, etc. Decision trees and systems of decision rules are among the most interpretable models of knowledge representation and classification. Investigating the relationships between these two models is an important task in computer science. The possibilities of transforming decision rule systems into decision trees are being studied in detail. The results are useful for researchers using decision trees and decision rule systems in data analysis, especially in rough set theory, logical analysis of data, and test theory. This book is also used to create courses for graduate students.
Original language | English (US) |
---|---|
Title of host publication | Studies in Big Data |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 1-303 |
Number of pages | 303 |
DOIs | |
State | Published - 2024 |
Publication series
Name | Studies in Big Data |
---|---|
Volume | 160 |
ISSN (Print) | 2197-6503 |
ISSN (Electronic) | 2197-6511 |
Bibliographical note
Publisher Copyright:© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
Keywords
- Artificial Intelligence
- Computational Intelligence
- Decision Rules
- Decision Tree
- Rough Sets
ASJC Scopus subject areas
- Control and Systems Engineering
- Engineering (miscellaneous)
- Computer Science Applications
- Artificial Intelligence