Abstract
To integrate heterogeneous and large omics data constitutes not only a conceptual challenge but a practical hurdle in the daily analysis of omics data. With the rise of novel omics technologies and through large-scale consortia projects, biological systems are being further investigated at an unprecedented scale generating heterogeneous and often large data sets. These data-sets encourage researchers to develop novel data integration methodologies. In this introduction we review the definition and characterize current efforts on data integration in the life sciences. We have used a web-survey to assess current research projects on data-integration to tap into the views, needs and challenges as currently perceived by parts of the research community.
Original language | English (US) |
---|---|
Pages (from-to) | I1 |
Journal | BMC SYSTEMS BIOLOGY |
Volume | 8 |
DOIs | |
State | Published - 2014 |
Externally published | Yes |
Bibliographical note
Funding Information:We would like to sincerely thank PhD Gordon Ball and PhD Ali Mortazavi for the constructive review of the manuscript. The supplement originated thanks to a Workshop co-organised by EU FP7 306000 STATegra and SeqAhead COST Action BM1006. The contribution of DGC, IA, DM, MM, EB, AC and JT was supported by EU FP7 306000 STATegra. The contribution of DGC was also supported by BILS (http://www.bils.se). The contribution of AG, EB and AC was supported by EU COST Action BM1006: SeqAhead. The contribution of AG and EB-R was supported by EU FP7 289452 ALLBIO. The contribution of JT was also supported by Stockholm County Council, and the Swedish Research Council. The contribution of IA was also supported by Åke Wibergs Stiftelsen medicine research Diarienr: 719593091 (http://ake-wiberg.se/).
ASJC Scopus subject areas
- Structural Biology
- Modeling and Simulation
- Molecular Biology
- Computer Science Applications
- Applied Mathematics