Current-Induced Reversible Split of Elliptically Distorted Skyrmions in Geometrically Confined Fe3Sn2 Nanotrack

Zhipeng Hou, Qingping Wang, Qiang Zhang, Senfu Zhang, Chenhui Zhang, Guofu Zhou, Xingsen Gao, Guoping Zhao, Xixiang Zhang, Wenhong Wang, Junming Liu

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Skyrmions are swirling spin textures with topological characters promising for future spintronic applications. Skyrmionic devices typically rely on the electrical manipulation of skyrmions with a circular shape. However, manipulating elliptically distorted skyrmions can lead to numerous exotic magneto-electrical functions distinct from those of conventional circular skyrmions, significantly broadening the capability to design innovative spintronic devices. Despite the promising potential, its experimental realization so far remains elusive. In this study, the current-driven dynamics of the elliptically distorted skyrmions in geometrically confined magnet Fe3Sn2 is experimentally explored. This study finds that the elliptical skyrmions can reversibly split into smaller-sized circular skyrmions at a current density of 3.8 × 1010 A m−2 with the current injected along their minor axis. Combined experiments with micromagnetic simulations reveal that this dynamic behavior originates from a delicate interplay of the spin-transfer torque, geometrical confinement, and pinning effect, and strongly depends on the ratio of the major axis to the minor axis of the elliptical skyrmions. The results indicate that the morphology is a new degree of freedom for manipulating the current-driven dynamics of skyrmions, providing a compelling route for the future development of spintronic devices.
Original languageEnglish (US)
Pages (from-to)2206106
JournalAdvanced Science
DOIs
StatePublished - Jan 22 2023

Bibliographical note

KAUST Repository Item: Exported on 2023-01-25
Acknowledged KAUST grant number(s): CRF-2019-4081-CRG8
Acknowledgements: Z.H. and Q.W. contributed equally to this work. The authors thank for the financial supports from the National Key Research and Development Program of China (No. 2020YFA0309300), National Natural Science Foundation of China Fund (Grant Nos. 51901081, 51771127, 52171188, 52111530143 and 52271178), Science and Technology Program of Guangzhou (202002030052), Joint Research Key Fund for Guangzhou and Shen Zhen (2021B1515120047), and Science and Technology Projects in Guangzhou (202201000008). Central Governemnt Funds of Guiding Local Scientific and Technological Development for Sichuan Province (NO. 2021ZYD0025). X.X.Z. acknowledges the financial support from King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR) under Award No. CRF-2019-4081-CRG8.

Fingerprint

Dive into the research topics of 'Current-Induced Reversible Split of Elliptically Distorted Skyrmions in Geometrically Confined Fe3Sn2 Nanotrack'. Together they form a unique fingerprint.

Cite this