Current-induced changes of migration energy barriers in graphene and carbon nanotubes

Tobechukwu Joshua Obodo, I. Rungger, S. Sanvito, Udo Schwingenschlögl

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. © 2016 The Royal Society of Chemistry.
Original languageEnglish (US)
Pages (from-to)10310-10315
Number of pages6
Issue number19
StatePublished - 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This work is supported by the King Abdullah University of Science and Technology (KAUST) within the ACRAB project. Computational resources were provided by KAUST HPC and by the Trinity Centre for High Performance Computing.


Dive into the research topics of 'Current-induced changes of migration energy barriers in graphene and carbon nanotubes'. Together they form a unique fingerprint.

Cite this