Crystal Engineering of Dibenzothiophenothieno[3,2-b]thiophene (DBTTT) Isomers for Organic Field-Effect Transistors

Hung-Yang Chen, Guillaume Schweicher, Miquel Planells, Sean Ryno, Katharina Broch, Andrew J. P. White, Dimitrios Simatos, Mark Little, Cameron Jellett, Samuel J. Cryer, Adam Marks, Michael Hurhangee, Jean-Luc Bredas, Henning Sirringhaus, Iain McCulloch

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


Three thiophene ring-terminated benzothieno[3,2-b]benzothiophene (BTBT) derivatives, C-C6-DBTTT, C-C12-DBTTT, and L-C12-DBTTT, were designed and synthesized, differing in the isomerization of alkyl chain position as well as aromatic core construction. A study of crystal structure and electronic properties combined with a theoretical investigation was performed to understand the structure-property relationships for the application of these molecules in organic field-effect transistors (OFETs). Different crystal packing structures were observed for these three isomers by single-crystal X-ray diffraction as a result of a crystal engineering molecular design approach. The highest charge-carrier mobility was observed for the isomer with a collinear core, L-C12-DBTTT. Preliminary results demonstrated a promising hole mobility of 2.44 cm V s, despite the polymorphism observed in ambient conditions.
Original languageEnglish (US)
Pages (from-to)7587-7592
Number of pages6
JournalChemistry of Materials
Issue number21
StatePublished - Oct 25 2018

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: H.-Y.C. acknowledges postdoctoral fellowship support from Ministry of Science and Technology in Taiwan. G.S. acknowledges postdoctoral fellowship support from the Wiener-Anspach Foundation and The Leverhulme Trust (Early Career Fellowship supported by the Isaac Newton Trust). We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities, and we thank Dr. Raja Znaiguia and Dr. Francesco Carla for assistance in using beamline ID03. K.B. acknowledges financial support from the Institutional Strategy of the University of Tuebingen (Deutsche Forschungsgemeinschaft ZUK63). I.M., S.C., C.J., and M.L. acknowledge EC FP7 SC2 (610115), EC H2020 (643791), and EPSRC Projects EP/G037515/1 EP/M024873/1 and EP/M005143/1.


Dive into the research topics of 'Crystal Engineering of Dibenzothiophenothieno[3,2-b]thiophene (DBTTT) Isomers for Organic Field-Effect Transistors'. Together they form a unique fingerprint.

Cite this