Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: I. Preparation and experimental results

Jason K. Ward, William J. Koros

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Dense film mixed matrix membranes (MMMs) comprised of SSZ-13 dispersed in a crosslinkable polyimide (PDMC) were fabricated and evaluated for carbon dioxide/methane separations. MMMs containing 25% (w/w) as-received (AR) SSZ-13 exhibited a carbon dioxide permeability of 153 Barrers with a carbon dioxide/methane ideal selectivity of 34.7 at 65. psia and 35 °C. This represents a permeability enhancement of 129% and a decline in selectivity of 4.7% over neat PDMC (PCO2=66.9 Barrers, αCO2/CH4=36.4). A sieve surface modification procedure was developed with the aim of improving SSZ-13/PDMC MMM transport properties. MMMs containing 25% (w/w) surface modified (SM) SSZ-13 exhibited a carbon dioxide permeability of 148 Barrers and carbon dioxide/methane selectivity of 38.9 at 65. psia and 35 °C, representing enhancements in both permeability and selectivity of 121% and 6.9%, respectively. Mixed gas permeation analyses of MMMs containing SM-SSZ-13 using a 10% carbon dioxide/90% methane mixture shows that permeability and selectivity enhancements of 47% and 13%, respectively, over neat PDMC are possible at 700. psia and 35 °C. © 2011 Elsevier B.V.
Original languageEnglish (US)
Pages (from-to)75-81
Number of pages7
JournalJournal of Membrane Science
Volume377
Issue number1-2
DOIs
StatePublished - Jul 2011
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-I1-011-21
Acknowledgements: The authors would like to acknowledge funding for this work from ChevronTexaco Energy Technology Company, the National Science Foundation STC-CERSP (CHE-9876674), and King Abdullah University of Science and Technology (KAUST award no. KUS-I1-011-21).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: I. Preparation and experimental results'. Together they form a unique fingerprint.

Cite this