Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide

Wanyi Nie, Hsinhan Tsai, Jean-Christophe Blancon, Fangze Liu, Costas C. Stoumpos, Boubacar Traore, Mikael Kepenekian, Olivier Durand, Claudine Katan, Sergei Tretiak, Jared Crochet, Pulickel M. Ajayan, Mercouri G. Kanatzidis, Jacky Even, Aditya D. Mohite

Research output: Contribution to journalArticlepeer-review

198 Scopus citations

Abstract

Hybrid perovskites are on a trajectory toward realizing the most efficient single-junction, solution-processed photovoltaic devices. However, a critical issue is the limited understanding of the correlation between the degree of crystallinity and the emergent perovskite/hole (or electron) transport layer on device performance and photostability. Here, the controlled growth of hybrid perovskites on nickel oxide (NiO) is shown, resulting in the formation of thin films with enhanced crystallinity with characteristic peak width and splitting reminiscent of the tetragonal phase in single crystals. Photophysical and interface sensitive measurements reveal a reduced trap density at the perovskite/NiO interface in comparison with perovskites grown on poly(3,4-ethylene dioxy thiophene) polystyrene sulfonate. Photovoltaic cells exhibit a high open circuit voltage (1.12 V), indicating a near-ideal energy band alignment. Moreover, photostability of photovoltaic devices up to 10-Suns is observed, which is a direct result of the superior crystallinity of perovskite thin films on NiO. These results elucidate the critical role of the quality of the perovskite/hole transport layer interface in rendering high-performance and photostable optoelectronic devices.
Original languageEnglish (US)
Pages (from-to)1703879
JournalADVANCED MATERIALS
Volume30
Issue number5
DOIs
StatePublished - Dec 11 2017
Externally publishedYes

Bibliographical note

KAUST Repository Item: Exported on 2022-06-07
Acknowledgements: The work at Los Alamos National Laboratory (LANL) was supported by DoE Office of Basic Energy Sciences Work Proposal 08SPCE973 (W.N., J-C.B. and A.D.M.) and by the LANL LDRD program (A.D.M. and S.T.). This work was done in part at the Center for Integrated Nanotechnologies, an Office of Science User Facility. The GIWAXS maps were done with help of Dr. Joseph W. Strzalka and use of sector 8-IDE in Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. The simulation work was performed using HPC resources from GENCI-[TGCC/CINES/IDRIS] (Grant 2017-A0010907682). The work at ISCR is supported by Agence Nationale pour la Recherche (TRANSHYPERO project). B.T. acknowledges funding from the European Union's Horizon 2020 program, through an FET Open research and innovation action under grant agreement No 687008. C.C.S. and M.G.K. acknowledge the support under ONR Grant N00014-17-1-2231. The authors thank Prof. Osman M. Bakr (KAUST) for providing single crystal diffraction data.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.

Fingerprint

Dive into the research topics of 'Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide'. Together they form a unique fingerprint.

Cite this