Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures

V. A. Torrealba, R. T. Johns

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


This article introduces a consistent and robust model that predicts interfacial tensions for all microemulsion Winsor types and overall compositions. The model incorporates film bending arguments and Huh's equation and is coupled to phase behavior so that simultaneous tuning of both interfacial tension (IFT) and phase behavior is possible. The oil-water interfacial tension and characteristic length are shown to be related to each other through the hydrophilic-lipophilic deviation (HLD). The phase behavior is tied to the micelle curvatures, without the need for using the net average curvature (NAC). The interfacial tension model is related to solubilization ratios in order to introduce a coupled interfacial tension-phase behavior model for all phase environments. The approach predicts two- and three-phase interfacial tensions and phase behavior (i.e., tie lines and tie triangles) for changes in composition and HLD input parameters, such as temperature, pressure, surfactant structure, and oil equivalent alkane carbon number. Comparisons to experimental data show excellent fits and predictive capability.
Original languageEnglish (US)
Pages (from-to)13604-13614
Number of pages11
Issue number47
StatePublished - Nov 15 2017

Bibliographical note

KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The authors thank the member companies of the Enhanced Oil Recovery JIP in the EMS Energy Institute at The Pennsylvania State University at University Park, PA for their financial support. R.T.J. is Chair of the undergraduate Petroleum and Natural Gas Engineering program and holds the Victor and Anna Mae Beghini Faculty Fellowship in Petroleum and Natural Gas Engineering at The Pennsylvania State University. He also holds the Energi Simulation Chair in Fluid Behavior and Rock Interactions at Penn State.


Dive into the research topics of 'Coupled Interfacial Tension and Phase Behavior Model Based on Micellar Curvatures'. Together they form a unique fingerprint.

Cite this