Abstract
A new tunable diode-laser sensor based on CO2 absorption near 2.7 μm is developed for high-resolution absorption measurements of CO 2 concentration and temperature. The sensor probes the R(28) and P(70) transitions of the ν1+ν3 combination band of CO2 that has stronger absorption line-strengths than the bands near 1.5 μm and 2.0 μm used previously to sense CO2 in combustion gases. The increased absorption strength of transitions in this new wavelength range provides greatly enhanced sensitivity and the potential for accurate measurements in combustion gases with short optical path lengths. Simulated high-temperature spectra are surveyed to find candidate CO2 transitions isolated from water vapor interference. Measurements of line-strength, line position, and collisional broadening parameters are carried out for candidate CO2 transitions in a heated static cell as a function of temperature and compared to literature values. The accuracy of a fixed-wavelength CO2 absorption sensor is determined via measurement of known temperature and CO2 mole fraction in a static cell and shock-tube. Absorption measurements of CO2 are then made in a laboratory flat-flame burner and in ignition experiments of shock-heated n-heptane/O2/argon mixtures to illustrate the potential of this sensor for combustion and reacting-flow applications.
Original language | English (US) |
---|---|
Pages (from-to) | 619-628 |
Number of pages | 10 |
Journal | Applied Physics B: Lasers and Optics |
Volume | 90 |
Issue number | 3-4 |
DOIs | |
State | Published - Mar 2008 |
Externally published | Yes |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)
- General Physics and Astronomy