Corona discharge ignition in a single cylinder research engine under boosted conditions

Daniel I. Pineda, Jyh Yuan Chen, Robert W. Dibble

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

As internal combustion engines become downsized to boost fuel economy, a current challenge is both obtaining ignition and stabilizing combustion at boosted prebures in lean and high exhaust gas recirculation dilution conditions. The use of non-equilibrium plasma technologies has shown promise as a means to ignite combustible mixtures at high prebures while using an amount of energy comparable to traditional inductive spark ignition. Despite progreb in fundamental research on this topic, both the capabilities and operation implications of emerging non-equilibrium plasma technologies in internal combustion engine applications have yet to be fully explored. This work documents the effects of using corona discharge ignition with a novel electrode geometry in a single cylinder gasoline direct injection research engine, and compares these results with experiments using a traditional inductive spark ignition system under a variety of engine speeds and loads. Preliminary analysis shows that using the corona discharge ignition system extends the exhaust gas recirculation limits of stable operation, improving fuel economy and reducing emibions relative to baseline conditions.
Original languageEnglish (US)
Title of host publication2016 Spring Technical Meeting of the Western States Section of the Combustion Institute, WSSCI 2016
PublisherWestern States Section/Combustion Institute
ISBN (Print)9781510823969
StatePublished - Jan 1 2016

Bibliographical note

KAUST Repository Item: Exported on 2020-12-23

Fingerprint

Dive into the research topics of 'Corona discharge ignition in a single cylinder research engine under boosted conditions'. Together they form a unique fingerprint.

Cite this