Abstract
FeNi3 based core-shell magnetic nanoparticles are demonstrated as the magnetic core material for on-chip, radio frequency (RF) inductors. FeNi3 nanoparticles with 50-150 nm in diameter with 15-20 nm-thick SiO2 coating are chemically synthesized and deposited on a planar inductor as the magnetic core to enhance both inductance (L) and quality factor (Q) of the inductor. Experimentally, the ferromagnetic resonant frequency of the on-chip inductors based on FeNi3 core-shell nanoparticles has been shown to be over several GHz. A post-CMOS process has been developed to integrate the magnetic nanoparticles to a planar inductor and inductance enhancements up to 50% of the original magnitude with slightly enhanced Q-factor up to 1 GHz have been achieved. © 2013 IEEE.
Original language | English (US) |
---|---|
Title of host publication | 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS) |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 465-468 |
Number of pages | 4 |
ISBN (Print) | 9781467356558 |
DOIs | |
State | Published - Jan 2013 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledgements: This work was supported in part by an Academic Excellence Alliance grant awarded by the KAUST (King Abdullah University of Science and Technology) Office of Competitive Research Fund, the DARPA N/MEMS program and a SRC (Semiconductor Research Corporation) grant. The authors would like to thank Dr. Kevin O'Brien, Jun-Chau Chien and Chia Meng Chen for valuable discussions.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.