Abstract
This paper develops an interference aware design for cooperative hybrid automatic repeat request (HARQ)-assisted non-orthogonal multiple access (NOMA) scheme for large-scale device-to-device (D2D) networks. Specifically, interference aware rate selection and power allocation are considered to maximize long term average throughput (LTAT) and area spectral efficiency. The design framework is based on stochastic geometry that jointly accounts for the spatial interference correlation at the NOMA receivers as well as the temporal interference correlation across HARQ transmissions. It is found that ignoring the effect of the aggregate interference, or overlooking the spatial and temporal correlation in interference, highly overestimates the NOMA performance and produces misleading design insights. An interference oblivious selection for the power and/or transmission rates leads to violating the network outage constraints. To this end, the results demonstrate the effectiveness of NOMA transmission and manifest the importance of the cooperative HARQ to combat the negative effect of the network aggregate interference. For instance, comparing to the non-cooperative HARQ-assisted NOMA, the proposed scheme can yield an outage probability reduction by 21%. Furthermore, an interference aware optimal design that maximizes the LTAT given outage constraints leads to 17% throughput improvement over HARQ-assisted orthogonal multiple access scheme.
Original language | English (US) |
---|---|
Article number | 8335325 |
Pages (from-to) | 4286-4302 |
Number of pages | 17 |
Journal | IEEE Transactions on Communications |
Volume | 66 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2018 |
Bibliographical note
Publisher Copyright:© 1972-2012 IEEE.
Keywords
- Device-to-device communications
- cooperative communications
- hybrid automatic repeat request
- non-orthogonal multiple access
- stochastic geometry
ASJC Scopus subject areas
- Electrical and Electronic Engineering