Abstract
This paper studies adaptive finite element methods (AFEMs), based on piecewise linear elements and newest vertex bisection, for solving second order elliptic equations with piecewise constant coefficients on a polygonal domain Ω⊂ℝ2. The main contribution is to build algorithms that hold for a general right-hand side f∈H-1(Ω). Prior work assumes almost exclusively that f∈L2(Ω). New data indicators based on local H-1 norms are introduced, and then the AFEMs are based on a standard bulk chasing strategy (or Dörfler marking) combined with a procedure that adapts the mesh to reduce these new indicators. An analysis of our AFEM is given which establishes a contraction property and optimal convergence rates N-s with 0
Original language | English (US) |
---|---|
Pages (from-to) | 671-718 |
Number of pages | 48 |
Journal | Foundations of Computational Mathematics |
Volume | 12 |
Issue number | 5 |
DOIs | |
State | Published - Jun 29 2012 |
Externally published | Yes |
Bibliographical note
KAUST Repository Item: Exported on 2020-10-01Acknowledged KAUST grant number(s): KUS-C1-016-04
Acknowledgements: This research was supported by the Office of Naval Research Contracts ONR-N00014-08-1-1113, ONR N00014-09-1-0107; the AFOSR Contract FA95500910500; the ARO/DoD Contract W911NF-07-1-0185; the NSF Grants DMS-0915231, DMS-0807811, and DMS-1109325; the Agence Nationale de la Recherche (ANR) project ECHANGE (ANR-08-EMER-006); the excellence chair of the Fondation "Sciences Mathematiques de Paris" held by Ronald DeVore. This publication is based on work supported by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.