Abstract
Fast multigrid solvers are considered for the linear systems arising from the bilinear finite element discretizations of second-order elliptic equations with anisotropic diffusion. Optimal convergence of Vcycle multigrid methods in the semicoarsening case and nearly optimal convergence of V-cycle multigrid method with line smoothing in the uniformly-coarsening case are established using the Xu-Zikatanov identity. Since the 'regularity assumption' is not used in the analysis, the results can be extended to general domains consisting of rectangles. © 2012 The author 2012. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Original language | English (US) |
---|---|
Pages (from-to) | 1329-1347 |
Number of pages | 19 |
Journal | IMA Journal of Numerical Analysis |
Volume | 32 |
Issue number | 4 |
DOIs | |
State | Published - Jan 1 2012 |
Externally published | Yes |
Bibliographical note
Generated from Scopus record by KAUST IRTS on 2023-02-15ASJC Scopus subject areas
- Computational Mathematics
- Applied Mathematics
- General Mathematics