Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State

Natalie A. Pace, Weimin Zhang, Dylan H. Arias, Iain McCulloch, Garry Rumbles*, Justin C. Johnson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


The conjugated polymer poly(benzothiophene dioxide) (PBTDO1) has recently been shown to exhibit efficient intramolecular singlet fission in solution. We investigate the role of intermolecular interactions in triplet separation dynamics after singlet fission. We use transient absorption spectroscopy to determine the singlet fission rate and triplet yield in two polymers differing only by side-chain motif in both solution and the solid state. Whereas solid-state films show singlet fission rates identical to those measured in solution, the average lifetime of the triplet population increases dramatically and is strongly dependent on side-chain identity. These results show that it may be necessary to carefully engineer the solid-state microstructure of these "singlet fission polymers" to produce the long-lived triplets needed to realize efficient photovoltaic devices.

Original languageEnglish (US)
Pages (from-to)6086-6091
Number of pages6
JournalJournal of Physical Chemistry Letters
Issue number24
StatePublished - Dec 21 2017

Bibliographical note

Funding Information:
N.A.P, D.H.A, G.R., and J.C.J. acknowledge the Solar Photochemistry Program of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences under contract DE-AC36-08GO28308 with NREL for support of spectroscopy, data analysis, and sample preparation. W.Z. and I.M. thank EPSRC Project EP/M005143/1 and EC FP7 Project SC2 (610115) for support of the polymer synthesis, purification, and characterization. We thank Obadiah Reid and Wade Braunecker for useful discussions.

Publisher Copyright:
© 2017 American Chemical Society.

ASJC Scopus subject areas

  • Materials Science(all)
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State'. Together they form a unique fingerprint.

Cite this